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The dimension of certain tree structures is of importance in percolation theory, 
as well as in the theoretical treatment of many other branching processes. We 
present a method of determining the Haugdorff dimension of such structures by 
employing the technique of Mauldin and Williams. The dimension is calculated 
based on the probability of generation of each branch from its parent on the 
tree representing the process. We use this method to analyze the dimension of 
tree structures representing two-directional linear bonding between equally 
weighted monomers, and show how it can be used to model enzymatic reaction 
pathways. 
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1. I N T R O D U C T I O N  

Trees have been used to model many different physical processes. These 
include the modeling of percolation clusters and the growth of 
aggregates, (1) the hierarchical treatment of energy barriers in molecular 
systems,(2) and the conformational steps followed by a macromolecule as it 
folds from an extended to a globular structure. ~3) The dimension of the 
resulting structure has been shown to be important in modeling random 
walks, diffusion, and kinetic and thermodynamic functions. A recent 
method for determining the Hausdorff dimension developed by Mauldin 
and Williams can be applied to such tree representations. 
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2. M E T H O D  (4'5) 

The Mauldin-Williams formalism is based on the concept of graph 
self-similarity. In general this is a treatment for systems which can be 
visualized as a group (set) of sets. Each of these sets can be described as 
being constructed from versions (whole or shrunken, rotated, translated, or 
a combination of these) of some or all of the sets in the group, including 
itself. A similarity factor or ratio is associated with each of these versions 
which construct a set in the group. The Mauldin-Williams representation 
of such a system is a directed multigraph. The nodes or vertices of the 
graph represent the sets in the group, and the directed edges represent how 
a particular node or set is composed from the others (and/or itself). The 
edges are directed from the constructed set to those from which it is 
constructed. Another way of looking at it is that the edges are directed to 
those sets into which the set can be decomposed. The similarity factor 
associated with a particular edge is written along side it. Figure 1 shows an 
example of a Mauldin-Williams graph representing a geometric system. 

Tree structures are analogous to the system of sets described above. 
The edges in this case would correspond to the children into which the 
parent is "decomposed." The similarity ratio can correspond to the 
probability of generating that child from the parent, or with some other 
factor associated with generation of that element of the tree. 

To find the dimension of the Mauldin-Williams representation, it is in 
general necessary to first compute Perron numbers for the system. These 
are positive numbers which obey the following relation: 

q~'= ~ r~(e) q} (2.1) 
j e v  

e E gi, j 

where r(e) is the similarity ratio associated with edge e, V refers to the set 
of vertices, and g to the set of edges (g,.j is the set of edges directed from 

1 

-1/2 

(a) (b) 
Fig. 1. Example of a system showing graph self-similarity. (a) This system is composed of a 
square and a triangle. The relationship between the two components of the system can be 
stated as: A = t w o  full-size copies of B, and B = t w o  1/x/-2-size copies of B. (b) The 
Mauldin-Williams graph for this system. Notice that it is not strongly connected, and not 
contracting [not  all r(e)'s are less than 1 ]. 
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i to j). The positive number s will be unique and is the dimension of the 
graph. The Perron numbers can be calculated analytically or numerically, 
depending on the system. However, if there is only one node in the graph, 
the relation reduces to 

1=  ~ r'(e) (2.2) 
e~ff 

In this case, dimension s is simply the solution to this equation. 
If the graph is strongly connected (there is a path from every node to 

every other node on the graph), then the sets (the vertices or nodes of the 
graph) will all have the same dimension, and this will be labeled the dimen- 
sion of the graph. If the graph is not strongly connected, it may be possible 
to decompose it into strongly connected subgraphs. In this case, the dimen- 
sion of the system will be the maximum dimension of those found for the 
decomposition subgraphs (see ref. 5, Theorem 4). If the system of sets is 
strongly connected (with the exception above), and contracting (i.e., all of 
the similarity ratios are less than one), and an open set condition is 
satisfied for the realization of the graph, 4 then the dimension s of the graph 
will be the Hausdorff dimension of the systemJ 4~ 

3. RESULTS 

Here we give examples of the calculation of the Hausdorff dimension 
for tree structures, two-directional linear bonding between equally weighted 
monomers, and the reaction pathway of a simple enzyme-catalyzed 
reaction. 

Consider a linear polymer chain which is composed of two monomers, 
A and B. These monomers can add to the chain in either direction, and 
the addition of either an A or a B is equally likely. In other words, the 
probability of either an A or a B bonding to the chain is the same, 0.5. 
Because the monomers can bind to either end of the chain, the probability 
of an A bonding on both ends of the existing chain is (0.5 x 0.5) = 0.25. The 
probability of a B joining on both ends will also be 0.25. However, the 
probability of a species occurring with an A bonding on one end and 
a B bonding on the other is more interesting because in some cases the 
parent will be a symmetric species (about the center node), and in others, 
asymmetric. If the parent is asymmetric, two distinguishable species will be 
formed (Fig. 2), each having probability 0.25 of being generated from the 

4 For  details about  the open set condition, see refs. 4 and 5. Satisfying this condition assures 
no overlap between the sets that  compose the system. In the case of a tree structure, no 
overlap is possible and so for this specific case, the condition is not  required. 
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Fig. 2. Two-dimensional linear bonding between equally-weighted monomers. (a) Tree 
representation. A and B are equally-weighted monomers. The probability of a branch occur- 
ring is shown next to the branch. (b) Tree representation. S and A s  refer to symmetric and 
asymmetric species Ffor species, see tree in panel (a)]. (c) Box representation (due to 
G. A. Edgar) of the symmetric transition in this system. 
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parent. However, if the parent is a symmetric species, only one child 
node will be formed, having a probability of 0.5. This event is twice as 
likely because two identical species will be formed. These resulting species 
will be asymmetric about the center node. An interesting tree structure 
is generated from this process because of the symmetric/asymmetric 
transition. 

A Mauldin-Williams graph for the tree structure is shown in Fig. 3. 
Notice that, because of the symmetric/asymmetric transition, the tree is not 
self-similar. In other words, the pattern of nodes on a certain tier in the tree 
is not in all cases exactly like the pattern of nodes on the tier immediately 
above. The resulting Mauldin-Williams representation will not be strongly 
connected. This graph, though, can be decomposed into two strongly 
connected subgraphs, and so the Hausdorff dimension can be evaluated. As 
stated above, Hausdorff dimension will be the maximum of the s values for 
the decomposition subgraphs. 

In this example, the s value for the first decomposition graph (left 
graph in Fig. 3b) will be 0.5, and that for the second (right graph in 
Fig. 3b) is 1.0. The overall Hausdorff dimension for this tree is therefore 
1.0. 

Consider the tree structure shown in Fig. 4a. This structure represents 
the binding/reaction pathway for simple enzyme-catalyzed reactions. The 
Mauldin-Williams graph resulting from this tree will be slightly more 
complicated than in the previous case, and is shown in Fig. 4c. 

This graph, unlike that of the previous example, is strongly connected, 
and has three nodes, E, ES, and EP, and five edges with ratios a, b, c, d, 
and e. The nodes represent the free enzyme, the enzyme-substrate complex, 

1/4 1/4 
1/2 ~ / 4  

1/4 Q~ ~1/4 
i/4 

(a) 

1/4 1/4 
~ / 4  

i/4 Q e vl/4 
1/4 

(b) 
Fig. 3. (a) Mauldin-Williams graph of the tree shown in Fig. 2b. Notice that this graph 
is contracting, but not strongly connected. (b) Decomposition into strongly connected, 
contracting subgraphs. 
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Fig. 4. A simple enzymatic binding/reaction pathway (a) Conventional representation, 
(b) tree representation, (c) Mauldin Williams graph for this system. The lower case letters 
represent the probabilities associated with each step. 

and the enzyme-product  complex. The values associated with the edges 
represent the probability of the binding or reaction along the direction of 
the arrow. 

The expressions for the Perron numbers of this graph allow us to 
determine the dimension of ' the system. As would be expected, this dimen- 
sion will change with the edge (ratio) values a, b, c, d, and e. Using (2.1), 
and following the procedure given in ref. 5, we obtain 

V= {E, ES, EP} 

. . . . . . .  (3.1a) q e -  ~, r~(e) q j = a q e s + e q e e  
j e V  

eE~E,j 
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qS  m 
E S - -  2 

j e  V 
e E 8ES, j 

qEe  -- ~ ,  
j ~ V  

e ~ ~Ep, j 

rS(e)  q}  = bSq~e + c'qSee 

, s s 
rS(e)  qj  = d q e  

(3.2a) 

(3.3a) 

:r s Letting x = q),  y = q e s ,  and z = q e e ,  these become 

x = aSy + e ' z  

y = b~x + c~z 

z = d ' x  

(3.1b) 

(3.2b) 

(3.3b) 

Solving this system simultaneously leads to 

x = aS(bSx + c ' d S x )  + e~dSx 

Division by x and rearrangment yields 

0 = aSb s + a ' cSd  s + eSd s - 1 (3.5) 

Using this expression, s, the dimension of the system, can easily be deter- 
mined numerically for various values of the probabilities a, b, c, d, and e. 
These probabilities can be determined by detailed experimentation on the 
system in question, and will be different, depending on the particular 
enzyme and reaction conditions (concentration of enzyme and substrate, 
exit route for product, temperature, pH, etc.). Depending on the 
probabilities expressed by the system, the dimension for the reaction can be 
widely different. Two examples are given below. 

In Fig. 5, two sets of probabilities are given for the branches on the 
binding/reaction pathway. The probabilities used here were not derived 
from experimental data, but were chosen to emphasize the results of the 
calculations. In the case of Fig. 5a, the probability of the enzyme-substrate 
complex reacting to yield free enzyme and product is 0.005, and that of the 
enzyme-substrate complex dissociating into free enzyme and substrate is 
0.995. These values are reversed in the case of Fig. 5b. Interchanging these 
values has major consequences in terms of the kinetics of the enzyme, as 
well as for the dimension of the resulting graph. Using the first set of 
probabilities, expression (3.5) becomes 

0 = (0.995)" (0.995)'+ (0.995)" (0.005) s (0.875) s 

+ (0.005)" (0.875) ' -  1 (3.6) 
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Fig. 5. Mauldin Williams graphs for the simple enzyme system, showing two possible sets of 
probabilities. (a) Graph with dimension 0.9793, (b) graph with dimension 0.5954. 

Letting 2 =  (0.995/,  and expressing the other probabilities as powers of 
(0.995), this becomes 

0 = 2 2 --b 2 1084"64 -[- 2 1083"64 - -  1 (3.7a) 

Solving (3.7a) iteratively yields a value of 0.9951032, or an s value of 
0.9793. In  the second case, expression (3.7) becomes 

0 = 2 1085 "l'- 2 28.64 Jr- J~ 1083.64 - -  1 (3.7b) 

Solving yields a value for 2 of 0.9970199 and for s of 0.5954. 
At this point  we should note the following regarding these graphs. If, 

as in the first example, the sum of the edge ratios of  the arrows leaving 
each of  the nodes in the decomposi t ion graph is equal to one, the dimen- 
sion of that graph will equal one. In this example the sum of the ratios for 
the edges leaving node E is equal to 1, and the sum of those leaving E S  is 
1; however, the sum of those leaving node E P  is 0.857. 5 Because not  all of 
these values are equal to one, the dimension of this graph is a fractional 

value. 

4. C O N C L U S I O N  

In this paper we have shown that a recently developed method  for 
calculation of the Hausdorff  dimension of systems showing graph self- 
similarity can be used to determine this dimension for systems which can 

5 In this example, mechanism based inhibition is occurring which effectively removes some of 
the enzyme from the pathway and which causes the sum of the probabilities associated with 
the arrows leaving the EP node to be less than one. 
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be modeled as tree structures. It is our hope that this may be of some use 
to persons interested in the dimension of the many physical processes 
which have been modeled using trees. 

In addition, we have shown that this method can be used to determine 
the dimension of binding/reaction pathways. Futher study, which we are 
currently undertaking, is necessary to determine the thermodynamic and 
kinetic consequences of the differences in dimensionality of reactions 
studied in this manner. We feel that the dimension of a reaction can be 
related to its reaction mechanism, and we hope to show the nature of this 
relationship in a later publication. 
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